Tunable microlens arrays actuated by various thermo-responsive hydrogel structures
نویسندگان
چکیده
We report on liquid-based tunable-focus microlens arrays made of a flexible polydimethylsiloxane (PDMS) polymer. Each microlens in the array is formed through an immiscible liquid–liquid interfacial meniscus. Here deionized water and silicone oil were used. The liquids were constrained in the PDMS structures fabricated through liquid-phase photopolymerization for molding and soft lithography. The microlenses were actuated by thermo-responsive N-isopropylacrylamide (NIPAAm) hydrogel microstructures and could be tuned individually by changing the local temperature. The NIPAAm hydrogels expanded and contracted, absorbing and releasing water, at different temperatures. Thus the pressure across the water–oil interface in the microlenses varied responding to the temperature, tuning their corresponding focal lengths. The microlens diameter was 2.4 mm. The typical microlens focal length was measured to be from 8 to 60 mm depending on the temperature. The microlens response time actuated by different structures and components of the NIPAAm hydrogels were compared. The normalized light intensities of the microlens focused spots were measured, matching well with a Zemax simulation, to study the microlens spherical aberrations. The NIPAAm hydrogel durability was also measured. (Some figures in this article are in colour only in the electronic version)
منابع مشابه
Tunable-focus microlens arrays on curved surfaces
We present a microlens array consisting of multiple liquid-based tunable-focus microlenses omnidirectionally fabricated on a hemisphere, resulting in large field of view. Polymer bridge structure is formed between microlenses to reduce the stress and deformation in each lens structure. Each microlens in the array is formed via a water-oil interface at its lens aperture. Photopatterned thermo-re...
متن کاملTunable microlens actuated via a thermoelectrically driven liquid heat engine
Articles you may be interested in Thermally actuated tunable liquid microlens with sub-second response time Appl. A versatile liquid-core/liquid-twin-cladding waveguide micro flow cell fabricated by rapid prototyping Appl. A p H-tunable hydrogel microlens array with temperature-actuated light-switching capability Appl. We have developed a thermally actuated liquid microlens. An embedded thermoe...
متن کاملEnvironmentally responsive active optics based on hydrogel-actuated deformable mirror arrays
We report hybrid polymer actuator arrays based on environmentally responsive hydrogel and actuatable optical microstructures that are designed to reversibly switch optical properties in response to the environment. Arrays of micrometer scale plates were patterned by deep reactive ion etching of silicon which served as master structures for replica molding in polydimethylsiloxane (PDMS). UV-cura...
متن کاملTunable Optical Nanoantennas Incorporating Bowtie Nanoantenna Arrays with Stimuli-Responsive Polymer
We report on a temperature-responsive tunable plasmonic device that incorporates coupled bowtie nanoantenna arrays (BNAs) with a submicron-thick, thermosensitive hydrogel coating. The coupled plasmonic nanoparticles provide an intrinsically higher field enhancement than conventional individual nanoparticles. The favorable scaling of plasmonic dimers at the nanometer scale and ionic diffusion at...
متن کاملSpecial Issue on Microlenses
The study and application of microscale lenses and lens arrays have been actively researched in recent years; new approaches in the fabrication of microlenses and microlens arrays have emerged. Also, novel applications of these microlenses and microlens arrays have been demonstrated. In an effort to disseminate the current advances in this specialized field of microlenses and microlens arrays, ...
متن کامل